Metabolic regulation of Na(+)/P(i)-cotransporter-1 gene expression in H4IIE cells.
نویسندگان
چکیده
We showed that the rat Na(+)/P(i) cotransporter-1 (RNaPi-1) gene was regulated by insulin and glucose in rat hepatocytes. The aim of this work was to elucidate signaling pathways of insulin-mediated metabolic regulation of the RNaPi-1 gene in H4IIE cells. Insulin increased RNaPi-1 mRNA abundance in the presence of glucose and decreased RNaPi-1 mRNA in the absence of glucose, clearly establishing an involvement of metabolic signals for insulin-induced upregulation of the RNaPi-1 gene. Pyruvate and insulin increased RNaPi-1 expression but downregulated L-pyruvate kinase, indicating the existence of gene-specific metabolic signals. Although fructose, glycerol, and lactate could support insulin-induced upregulation of the RNaPi-1 gene, compounds entering metabolism beyond pyruvate oxidation, such as acetate and citrate, could not, suggesting that RNaPi-1-specific metabolic signals are generated at or above pyruvate oxidation. Wortmannin, LY-294002, and rapamycin abolished the insulin effect on the RNaPi-1 gene, whereas expression of dominant negative Asn(17) Ras and mitogen-activating protein kinase (MAPK) kinase (MEK) inhibitor PD-98059 exhibited no effect. Thus we herein propose that metabolic regulation of RNaPi-1 expression by insulin is mediated through the phosphatidylinositol 3-kinase/p70 ribosomal S6 kinase pathways, but not the Ras/MAPK pathway.
منابع مشابه
Electroneutral Na-coupled cotransporter expression in the kidney during variations of NaCl and water metabolism.
The purpose of the present study was to analyze the long-term regulation of renal bumetanide-sensitive Na+-K+-2Cl- cotransporter and thiazide-sensitive Na+-Cl- cotransporter gene expression during changes in NaCl and water metabolism. Male Wistar rats exposed to high or low NaCl intake, saline loading, dehydration, water loading, and furosemide administration during 7 days were studied. Control...
متن کاملRegulation of intestinal phosphate transport. I. Segmental expression and adaptation to low-P(i) diet of the type IIb Na(+)-P(i) cotransporter in mouse small intestine.
The Na(+)-P(i) cotransporter NaPi-IIb (SLC34A2) has been described to be involved in mouse small intestinal absorption of P(i) and to be regulated by a number of hormones and metabolic factors. However, a possible segmental expression of NaPi-llb in small intestine has not been addressed so far. Here, we describe that the NaPi-IIb cotransporter is highly abundant in the ileum of mouse small int...
متن کاملProximal tubular phosphate reabsorption: molecular mechanisms.
Renal proximal tubular reabsorption of P(i) is a key element in overall P(i) homeostasis, and it involves a secondary active P(i) transport mechanism. Among the molecularly identified sodium-phosphate (Na/P(i)) cotransport systems a brush-border membrane type IIa Na-P(i) cotransporter is the key player in proximal tubular P(i) reabsorption. Physiological and pathophysiological alterations in re...
متن کاملMutations in the Human Na-K-2Cl Cotransporter (NKCC2) Identified in Bartter Syndrome Type I Consistently Result in Nonfunctional Transporters
Mutations in the Human Na-K-2Cl Cotransporter (NKCC2) Identified in Bartter Syndrome Type I Consistently Result in Nonfunctional Transporters Abnormalities of the Na-K-Cl Cotransporter in Bartter Syndrome. Bartter syndrome, an inherited disorder of renal NaCl reabsorption, can be caused by mutations of the Na-K-Cl cotransporter (NKCC2), potassium channel (ROMK), chloride channel (ClC-Kb), or Ba...
متن کاملCFTR upregulates the expression of the basolateral Na+-K+-2Cl-cotransporter in cultured pancreatic duct cells.
The purpose of the current experiments was 1) to assess basolateral Na+-K+-2Cl-cotransporter (NKCC1) expression and 2) to ascertain the role of cystic fibrosis transmembrane conductance regulator (CFTR) in the regulation of this transporter in a prototypical pancreatic duct epithelial cell line. Previously validated human pancreatic duct cell lines (CFPAC-1), which exhibit physiological feature...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 278 4 شماره
صفحات -
تاریخ انتشار 2000